

100mA, 30V Low Dropout Linear Regulator

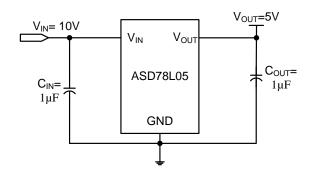
General Description

The ASD78LXX are low power, low dropout linear regulators. They are designed to operate with wide input voltage range of 3.0 – 30 Volts while delivering 100mA of load current. These products are available in either fixed or adjustable output Voltages.

Designed primarily to survive in the harsh automotive environment, the device will protect all external load circuitry from input fault conditions caused by reverse battery connection, two battery jump starts, and excessive line transients during load dump.

Due to its low supply current consumption, the devices are ideally suited for standby power applications. The ASD78LXX offer complete short-circuit and thermal protection. The combination of these two internal protection circuits gives the device a comprehensive safety system to safe guard against extreme adverse operating conditions.

The ASD78LXX are available in thermally enhanced SOT89 package, and it is rated for -40°C to +125°C temperature range.

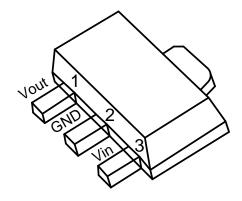

Features

- V_{IN} range: 3.0 30V
- 100mA maximum output current
- 2mA of typical supply current
- 0.02% line and 0.2% load regulation
- 360mV typical dropout voltage @ full load
- Short circuit protection
- Thermal shutdown protection
- -40°C to +125°C temperature range
- Available in SOT-89 package
- RoHS & WEEE compliant

Applications

- Set-top Box
- Automotive
- Remote Control

Typical Application


Pin Description

Symbol	Description		
GND Ground connection.			
V _{OUT} Regulated output Voltage. Connect a 1 capacitor from this pin to ground.			
V _{IN} Input supply pin. Connect a 1μF capa between this pin and ground.			

Pin Configuration

ASD78LXX

SOT89 (Top View)

Absolute Maximum Ratings (1)

Maximum Input Supply Voltage-0.3V to 35V

Recommended Operating Conditions

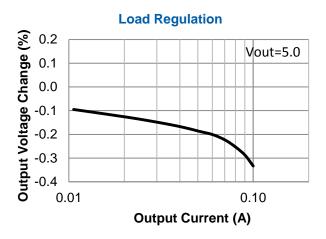
Input Voltage	3.0 to 30V
Ambient Operating Temperature40°	C to +125°C

Thermal Information (2)

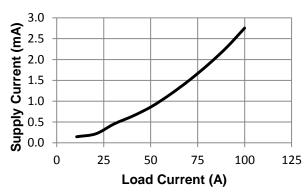
SOT-89	$oldsymbol{ heta}_{J\!A}$	160°C/W
Storage 7	Геmperature Range	65 to 150°C
Lead Ten	nperature (soldering 10:	s) 300°C
Junction 7	Temperature	40°C to +125°C

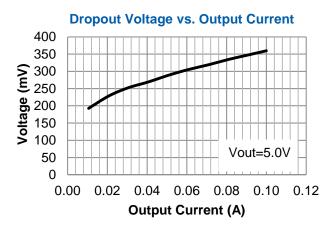
Electrical Characteristics

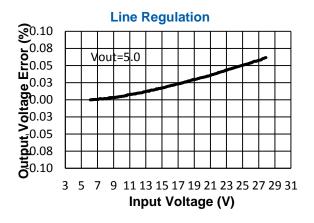
UNLESS OTHERWISE NOTED: $V_{IN}=6.5V$; $V_{O}=5.0V$; $C_{IN}=10\mu F$; $C_{OUT}=57\mu F$; $-40^{\circ}C \le T_{A}=T_{J} \le 125^{\circ}C$; $T_{J(MAX,)}=125^{\circ}C$; $TYPICAL VALUES ARE <math>T_{A}=25^{\circ}C$

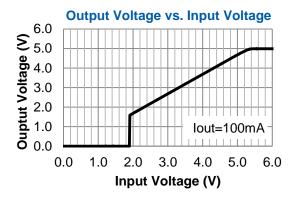

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Voltage Accuracy	V _{OUT}	Fixed V _{OUT} =5V; I _{OUT} =100mA	-0.5		0.5	%
Dropout Voltage	V_D	V _{IN} =99%*V _{OUT} ; I _{OUT} =100mA		360	450	mV
Minimum Output Current	Io		100			mA
Supply Current	IQ	Fixed Option; I _{OUT} = 100mA		2.75	10	mA
Current Limit	I _{LIM}					А
Line Regulation		6.0V≤V _{IN} -V _{OUT} ≤28V; I _{OUT} =10mA		0.06	0.2	%
Load Regulation ^{1,3}		V _{IN} =6.5V; I _{OUT} = 10mA – 100mA	-0.5	0.33	0.5	%
Ripple Rejection Ratio	PSRR	F=120Hz, I _O =1A ; V _O – V _{IN} =2.5V		58		dB

Notes:

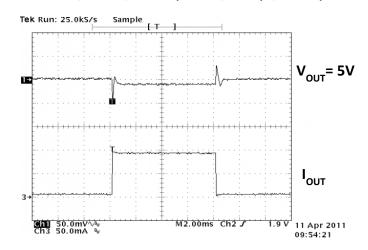

- 1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device.
- 2. Measured on approximately 1" square of 1oz copper
- 3. The ASD78LXX is guaranteed to meet performance specifications over the -40°C to +125°C operating temperature range and is assured by design, characterization, and correlation with statistical process control.




Typical Characteristic



Supply Current vs. Load Current



Transient Response

V_{IN}=8V; V_{OUT}=5V; Load Step= 90mA; C_{IN}=10μF; C_{OUT}=57μF

Application Hint

Input Capacitor (C_{IN})

Input capacitor may be required when the device is not near the source power supply or when supplied by a battery. This capacitor will reduce the circuit's sensitivity when powered from complex source impedance and significantly enhance the output transient response. The input bypass should be mounted with the short possible track directly across the regulator's input and ground terminals. A $1\mu F$ (tantalum, ceramic or aluminum) electrolytic capacitor should be adequate for most applications.

Output Capacitor (Cout)

The output capacitor provides not only stability to the regulator, but also, enhances the load transient response. For output voltages greater than 5V, a minimum capacitance of $1\mu F$ is required. For output voltages less than 5V, a $3.3\mu F$ capacitance is recommended. The capacitors should have ESR ranging from $20m\Omega$ to $5\Omega.$ Higher values of the output capacitance can be used to enhance transient response.

Thermal Considerations

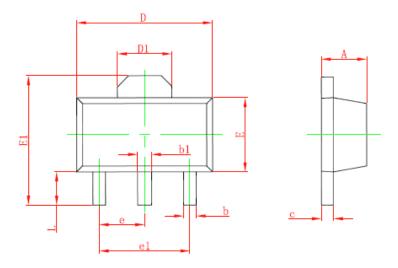
The ASD78LXX is designed to provide 100mA of continuous current in a very small package. Maximum power dissipation can be calculated based on the output current and the voltage drop across the part. To determine the maximum power dissipation of the package, use the junction-to-ambient thermal resistance of the device and the following basic equation:

$$P_{D(\text{max})} = \left(\frac{T_{J(\text{max})} - T_A}{\theta_{JA}}\right)$$

Where $T_{J(max)}$ is the maximum junction temperature of the die, T_A is the ambient operating temperature, and θ_{JA} is layout dependent.

The actual power dissipation of the regulator circuit can be determined using the equation:

$$P_D = (V_{IN} - V_{OUT})^*I_{OUT} + V_{IN}^*I_{SUP}$$


Substituting $P_{D(max)}$ for P_D and solving for the operating conditions that are critical to the application will give the maximum operating conditions for the regulator circuit.

Ordering Information

Device	Package	Output Voltage	Packing Method & Quantity
ASD78L05R	SOT89-3L	5.0V	2500 Tape & Reel
ASD78L33R	SOT89-3L	3.3V	2500 Tape & Reel
ASD78L30R	SOT89-3L	3.0V	2500 Tape & Reel
ASD78L25R	SOT89-3L	2.5V	2500 Tape & Reel
ASD78L18R	SOT89-3L	1.8V	2500 Tape & Reel
ASD78L15R	SOT89-3L	1.5V	2500 Tape & Reel

Outline Drawing and Landing Pattern (SOT89)

Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550 REF.		0.061	REF.	
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP.		0.060	TYP.	
e1	3.000 TYP.		0.118	TYP.	
L	0.900	1.200	0.035	0.047	

Disclaimer:

The information furnished in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Golden Gate Integrated Circuits (GGIC) for its use. GGIC reserves the right to change circuitry and specifications at any time without notification to the customer.

- Golden Gate Integrated Circuits reserves the right to make changes to the information herein for the improvement of the design and
 performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such
 information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using Golden Gate Integrated Circuits
 products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly
 and take essential measures to avoid situations in which a malfunction or failure of such Golden Gate Integrated Circuits products could
 cause loss of body injury or damage to property.
- Golden Gate Integrated Circuits (GGIC) Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of GGIC Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify GGIC for any damages resulting from such use or sale.