

CURRENT MODE PWM CONTROLLER

DESCRIPTION

GGDH6802 is current mode PWM controller with built-in high-voltage MOSFET used for SMPS.

GGDH6802 has a built-in high-voltage start-up constant current source and the charge current is large.

GGDH6802 enters burst mode to reduce the standby power dissipation in light load. The switch frequency is 60KHz with jitter frequency for low EMI.

GGDH6802 integrates various protections such as under voltage lockout, lead edge blanking, over voltage protection, over current protection and over temperature protection. The circuit will restart until normal if protection occurs.

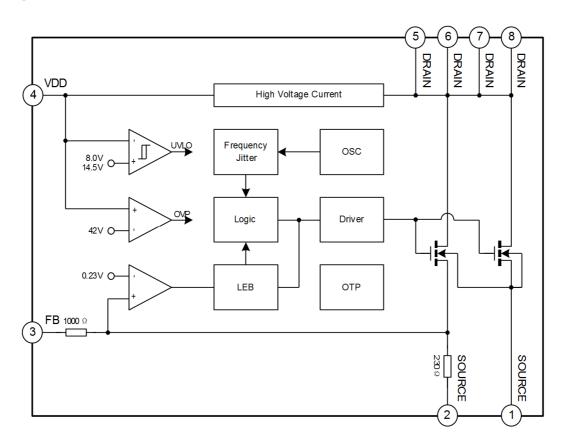
FEATURES

- * Built-in high voltage start-up constant current source
- * Frequency jitter for low EMI
- Wide supply voltage range: 9V ~ 38V
- * Burst mode with light load
- * Current control mode
- * Over voltage protection and under voltage lockout
- * Over current protection
- * Over temperature protection

APPLICATIONS

- Off-line SMPS
- Non-isolated buck-boost converter
- * Small home appliances

ORDERING INFORMATION


Part No.	Package	Marking	Material	Packing	
GGDH6802	DIP-8-300-2.54	GGDH6802	Pb free	Tube	

TYPICAL OUPUT POWER CAPABILITY

Dord No.	195	~265V	85~265V		
Part No.	Adapter	Open	Adapter	Open	
GGDH6802	10W	13W	5W	8W	

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Ratings	Unit
Drain Gate Voltage (RGS=1MΩ)	V_{DGR}	650	V
Gate-Source (GND) Voltage	V_{GS}	±30	V
Drain Current Pulse *	Ідм	6	Α
Continuous Drain Current (Tamb=25°C)	I _D	1	Α
Signal Pulse Avalanche Energy **	EAS	30	mJ
High Voltage Input	$V_{HV,MAX}$	650	V
Power Supply Voltage	Vcc,max	50	V
Feedback current	I _{FB}	3	mA
Power Dissipation	P _D	6.3	W
Thermal Resistance Junction-Ambient	θ_{ja}	70	°C/W
Thermal Resistance Junction-case	$\theta_{ m jc}$	20	°C/W
Operating Junction Temperature	TJ	+150	°C
Operating Temperature Range	T _{amb}	-20~+85	°C
Storage Temperature Range	T _{STG}	-55~+150	°C

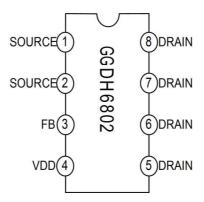
Note: 1. Pulse width is limited by maximum junction temperature;

2. L=51mH, T_J =25°C(start).

ELECTRICAL CHARACTERISTICS(For MOSFET, unless otherwise specified, T_{amb} =25°C)

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =50μA	650			V
Zero Gate Voltage Drain		V _{DS} =650V, V _{GS} =0V			50	μΑ
Current	I _{DSS}	V _{DS} =480V, V _{GS} =0V, T _{amb} =125°C			200	μΑ
Static Drain-Source On Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =0.5A		8.4		Ω
Input Capacitance	C _{ISS}	V _{GS} =0V, V _{DS} =25V, f=1MHz		155		pF
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1MHz		23		pF
Reverse Transfer Capacitance	C _{RSS}	V _{GS} =0V, V _{DS} =25V, f=1MHz		0.6		pF
Turn On Delay Time	T _{D(ON)}	V_{DD} =0.5B V_{DSS} , I_{D} =25mA		6		ns
Rise Time	T _R	V_{DD} =0.5B V_{DSS} , I_{D} =25mA		13		ns
Turn Off Delay Time	T _{D(OFF)}	V_{DD} =0.5B V_{DSS} , I_{D} =25mA		9		ns
Fall Time	T _F	V_{DD} =0.5B V_{DSS} , I_{D} =25mA		17		ns

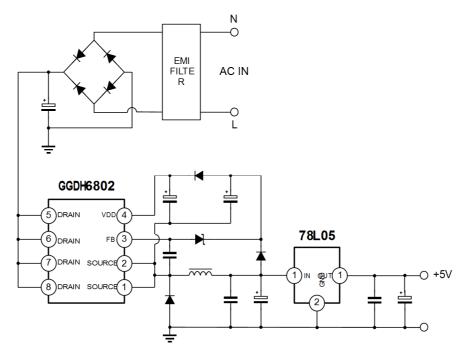
ote: The OL debounce Time and Soft start time is proportional to the period of switching cycle. So that, the lower RT value will bring the higher switching frequency, shorter the OL debounce Time and shorter Soft start


ELECTRICAL CHARACTERISTICS(Unless otherwise stated, Vcc=18V; Tamb=25°C)

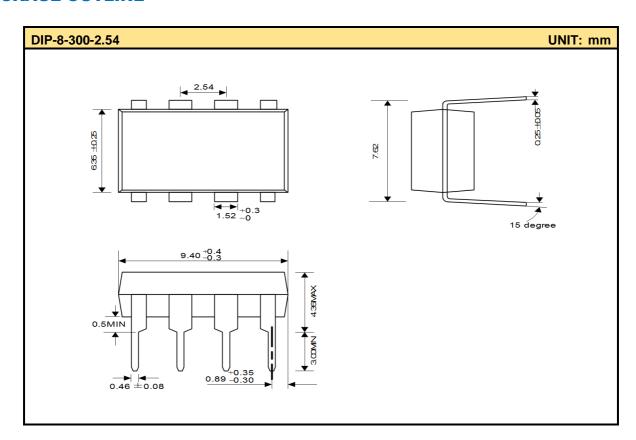
Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
High voltage start-up section						
Charge current	I _{HVC}	V _{CC} =0V, V _{HV} =100V	0.5	1.0	1.2	mA
Shutdown leakage current	I _{HVS}	V _{CC} =18V		3	20	μΑ
Supply section		,				
Operating voltage range	V_{DD}	After start-up	9V		38V	V
Operating current 0	I_{DD0}	I _{FB} = 2mA; not switching		0.55		mA
Operating current 1	I_{DD1}	$I_{FB} = 0.5 \text{mA}; I_D = 50 \text{mA}$		1.00		mA
Shutdown threshold	V_{DDOFF}		7	8	9	V
Start-up threshold	V_{DDON}		13	14.5	16	V
Threshold hysteresis	V_{DDHYS}		5.8	6.5	7.2	V
Over voltage threshold	V_{DDOVP}		38	42	46	V
PWM comparator section	PWM comparator section					
I _{FB} to I _D current gain	G_ID			320		
Peak current limitation	I _{DLIM}	V _{FB} = 0V	0.32	0.4	0.48	Α
I _{FB} shutdown current	I _{FBSD}			0.9		mA
FB Pin input impedance	R_{FB}	$I_D = 0mA$		1.2		kΩ
Current sense delay to turn-off	t _d	$I_{D} = 0.2A$		200		ns
lead edge blanking,	t _{LEB}			500		ns
Minimum turn-on time	T _{ONMIN}			700		ns

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Over temperature protection section						
Thermal shutdown temperature	T _{SD}			155		ô
Thermal shutdown hysteresis	T _{HYS}			40		°C

PIN CONFIGURATION



PIN DESCRIPTION


Pin No.	Pin Name	I/O	I/O Description		
1, 2	SOURCE	I/O	Power MOSFET source and circuit ground reference.		
3	FB	I	Feedback input. The useful voltage range extends from 0V to 1V, and defines the peak drain MOSFET current. The current limitation, which corresponds to the maximum drain current, is obtained for a FB pin shorted to the SOURCE pin.		
4	VDD	I/O	Power supply of the control circuits.		
5, 6, 7, 8 DRAIN I/O		I/O	Power MOSFET drain. Also used by the internal high voltage current source during start up phase for charging the external VDD capacitor		

TYPICAL APPLICATION CIRCUIT

PACKAGE OUTLINE

MOS DEVICES OPERATING NOTES:

Electrostatic charges may exist in many things. Please take the following preventive measures to prevent damage to the MOS electric circuit caused by discharge:

- The operator must put on wrist strap which should be earthed to against electrostatic discharge.
- Equipment cases should be earthed. •
- All tools used during assembly, including soldering tools and solder baths, must be earthed.
- MOS devices should be packed in antistatic/conductive containers for transportation.

Disclaimer:

- GGIC reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using GGIC products in system
 design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and take
 essential measures to avoid situations in which a malfunction or failure of such GGIC products could cause loss of body injury or
 damage to property.
- GGIC will supply the best possible product for customers!