

80A, 75V N-Channel MOSFET

General Description

GGVD75N08T is an N-channel enhancement mode MOS field effect transistor which is produced using Silan new structure VDMOS technology. The improved planar stripe cell and the improved guard ring terminal have been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. Optimize the parasitic parameters of the device and enhance the anti-jamming capability of the gate, which make it easy to use in parallel. These devices are widely used in AC-DC power suppliers, DC-DC converters and H-bridge PWM motor drivers.

Features

- 80A, 75V, RDS(on) (typ.) =9mΩ@VGS=10V
- Low gate charge
- Low Crss
- Fast switching
- Improved dv/dt capability

Ordering Information

Part No.	Package	Marking	Material	Packing
GGVD75N08T	TO-220-3L	GGVD75N08T	Pb free	Tube

Absolute Maximum Ratings (TC=25 C unless otherwise noted)

Characteristics		Symbol	Rating	Unit
Drain-Source Voltage		V _{DS}	75	V
Gate-Source Voltage		V _{GS}	V _{GS} ±20	
Drain Current	T _C =25℃		80	
	T _C =100℃	ID	70	A
Drain Current Pulsed		I _{DM}	300.0	А
Power Dissipation($T_{C}=25^{\circ}C$)			300	W
-Derate above 25°C		PD	2.40	W/°C
Single Pulsed Avalanche Energy (Note 1)		E _{AS}	844	mJ
Operation Junction Temperature Range		TJ	-55~+150	°C
Storage Temperature Range		T _{stg}	-55~+150	°C

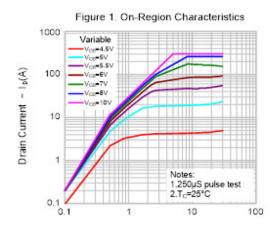
THERMAL CHARACTERISTICS

Characteristics	Symbol	Rating	Unit
Thermal Resistance, Junction-to-Case	$R_{ ext{e}_{JC}}$	0.42	°C/W
Thermal Resistance, Junction-to-Ambient	R _{eja}	62.50	°C/W

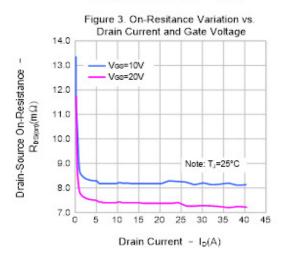
ELECTRICAL CHARACTERISTICS (T_c=25°C unless otherwise noted)

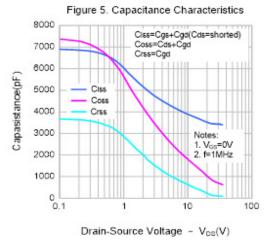
Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Drain –Source Breakdown Voltage	B _{VDSS}	V _{GS} =0V, I _D =250µA	75			V
Drain-Source Leakage Current	I _{DSS}	$V_{DS}=75V, V_{GS}=0V$			1.0	μA
Gate-Source Leakage Current	I _{GSS}	$V_{GS}=\pm 20V, V_{DS}=0V$			±100	nA
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2		4.0	V
Static Drain- Source On State Resistance	R _{DS(on)}	V _{GS} =10V, I _D =40 A		9	12	mΩ
Input Capacitance	C _{iss}	V _{DS} =25V,V _{GS} =0V, f=1.0MHZ		3486		
Output Capacitance	C _{oss}			790		pF
Reverse Transfer Capacitance	C _{rss}			143		
Turn-on Delay Time	t _{d(on)}	V _{DD} =40V, V _{GS} =10V, R _G =25Ω, I _D =37.5A (Note 2,3)		55		
Turn-on Rise Time	tr			229		
Turn-off Delay Time	t _{d(off)}			260		ns
Turn-off Fall Time	t _f			124		
Total Gate Charge	Qg	V _{DS} =60V, I _D =75A,		93		
Gate-Source Charge	Q _{gs}	V _{GS} =10V		20		nC
Gate-Drain Charge	Q _{gd}	(Note 2,3)		44		

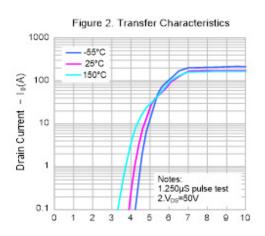
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS


Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Continuous Source Current	ls	Integral Reverse P-N			80	
Pulsed Source Current	I _{SM}	Junction Diode in the MOSFET			300.0	A
Diode Forward Voltage	V_{SD}	I _S =80A,V _{GS} =0V	-		1.5	V
Reverse Recovery Time	T _{rr}	I _S =80A,V _{GS} =0V,		91		ns
Reverse Recovery Charge	Q _{rr}	dI _F /dt=100A/µS (Note 2)		0.33		μC

Notes:


- 1. L=0.24mH, I_{AS} =85A, V_{DD} =35V, R_G =25 Ω , starting T_J =25°C;
- 2. Pulse Test: Pulse width ≤300µs,Duty cycle≤2%;
- 3. Essentially independent of operating temperature.

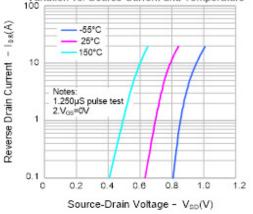


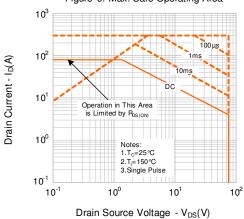

TYPICAL CHARACTERISTICS

Drain-Source Voltage - V_{DS}(V)

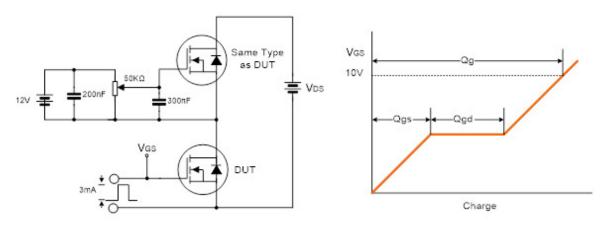
Gate-Source Voltage - V_{GS}(V)

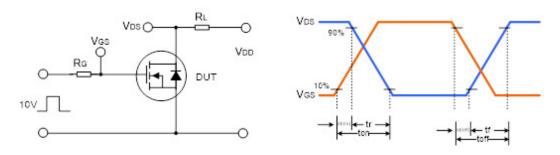
Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature



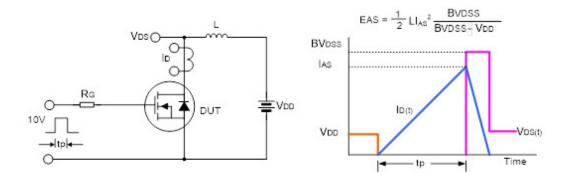

Figure 6. Gate Charge Characteristics 12 V_{DS}=60V Source Voltage - V_{GS}(V) V_{DS}=40V 10 V_{DS}=20V 8 6 4 Gate-2 Note: Ip=75A 0 0 20 40 60 80 100 120 Total Gate Charge - Qg(nC)

Golden Gate Integrated Circuits, Inc. www.goldengate-ic.com


Typical Characteristics (Continued)

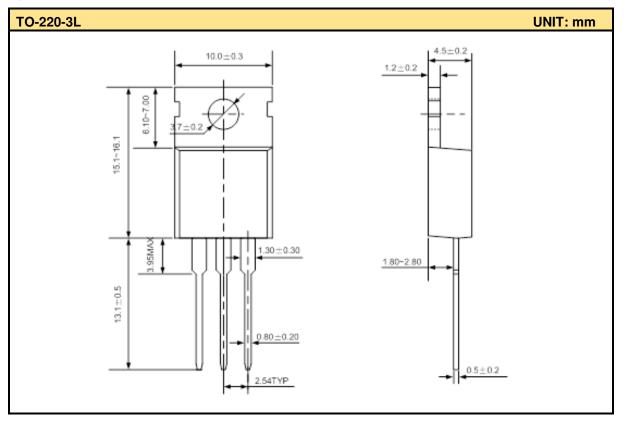


TYPICAL TEST CIRCUIT



Gate Charge Test Circuit & Waveform

Switching Test Circuit & Waveform



Package Outline

Disclaimer:

The information furnished in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Golden Gate Integrated Circuits (GGIC) for its use. GGIC reserves the right to change circuitry and specifications at any time without notification to the customer.

- Golden Gate Integrated Circuits reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using Golden Gate Integrated Circuits
 products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and
 take essential measures to avoid situations in which a malfunction or failure of such Golden Gate Integrated Circuits products could cause loss of
 body injury or damage to property.
- Golden Gate Integrated Circuits (GGIC) Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of GGIC Products for use in life support appliances, devices, or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify GGIC for any damages resulting from such use or sale.