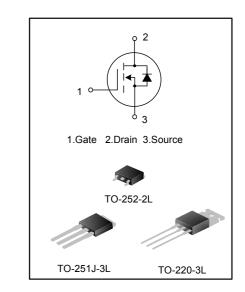


50A, 60V, N-Channel MOSFET

50A, 60V, N-Channel MOSFET


General Description

The GGVD50N06T is an N-channel enhancement mode high voltage MOS field effect transistor. An improved planar stripe cell and improved guard ring terminal have been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulses in the avalanche and commutation modes.

Features

- 50A, 60V
- $R_{DS(on)}$ (typ) =18m Ω @V_{GS}=10V
- Low gate charge
- Low Crss
- Fast switching
- Improved dv/dt capability

Nomenclature

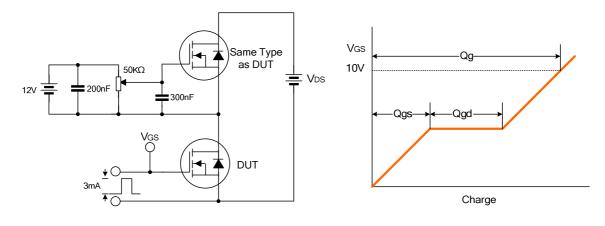
Applications

- Electronic Ballasts
- Low Power SMPS

N denotes N Channel

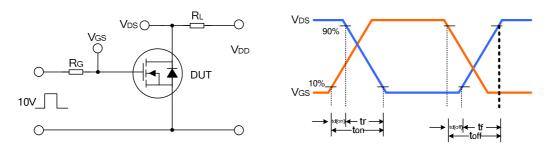
Package information. — Example:T:TO-220; D:TO-252; MJ:TO-251J. Nominal Voltage,using 2 digits

Example: 60 denotes 600V, 65 denotes 650V.

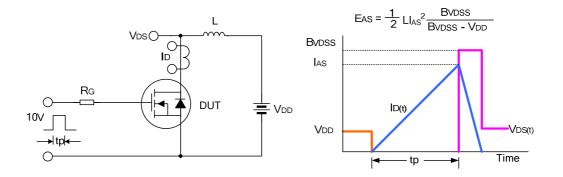

Special Features indication, May be omitted. Example: E denotes embeded ESD structure

Ordering Information

Part No.	Package	Marking	Material	Packing
GGVD50N06T	TO-220-3L	GGVD50N06T	Pb free	Tube
GGVD50N06D	TO-252-2L	GGVD50N06D	Pb free	Tube
GGVD50N06DTR	TO-252-2L	GGVD50N06D	Pb free	Tape & Reel
GGVD50N06MJ	TO-251J-3L	GGVD50N06MJ	Pb free	Tube

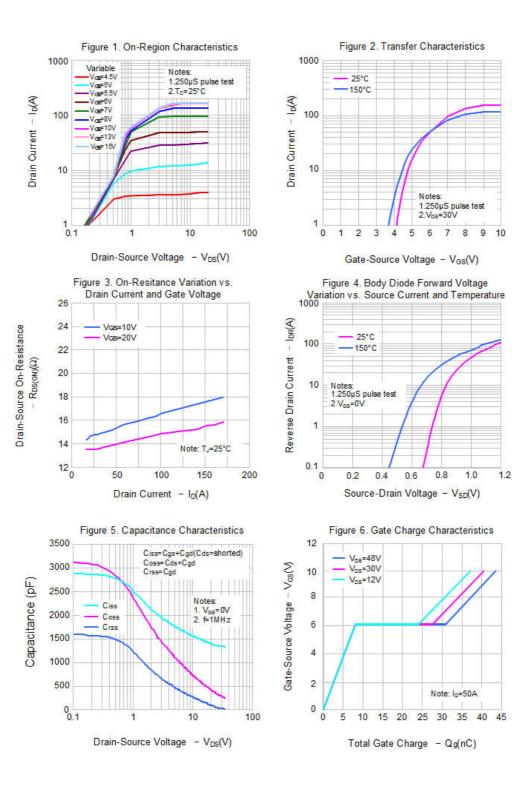


Typical Test Circuits



Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveform



Unclamped Inductive Switching Test Circuit & Waveform

Typical Characteristics

Golden Gate Integrated Circuits, Inc. www.goldengate-ic.com

50A, 60V, N-Channel MOSFET

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

Characteristics		Symbol	Rating			
			GGVD50N06T	GGVD50N06D	GGVD50N06MJ	Unit
Drain-Source Voltage		V _{DS}		V		
Gate-Source Voltage		V_{GS}		V		
Durain Quarter (T _C =25°C	I _D	50			
Drain Current	T _c =100°C		31.62			
Drain Current Pulsed		I _{DM}		А		
Power Dissipation(T _c =25°C)			110	72	83	W
-Derate above 25°C		P _D	0.88	0.58	0.66	W/°C
Single Pulsed Avalanche Energy(Note 1)		E _{AS}	272			
Operation Junction Temperature Range		TJ	-55~+150			
Storage Temperature Range		T _{stg}	-55~+150			

Thermal Characteristics

	Symbol	Rating			
Characteristics		GGVD50N06T	GGVD50N06D	GGVD50N06MJ	Unit
Thermal Resistance, Junction-to-Case	$R_{ extsf{ heta}JC}$	1.14	1.74	1.51	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ extsf{ heta}JA}$	62.50	110	110	°C/W

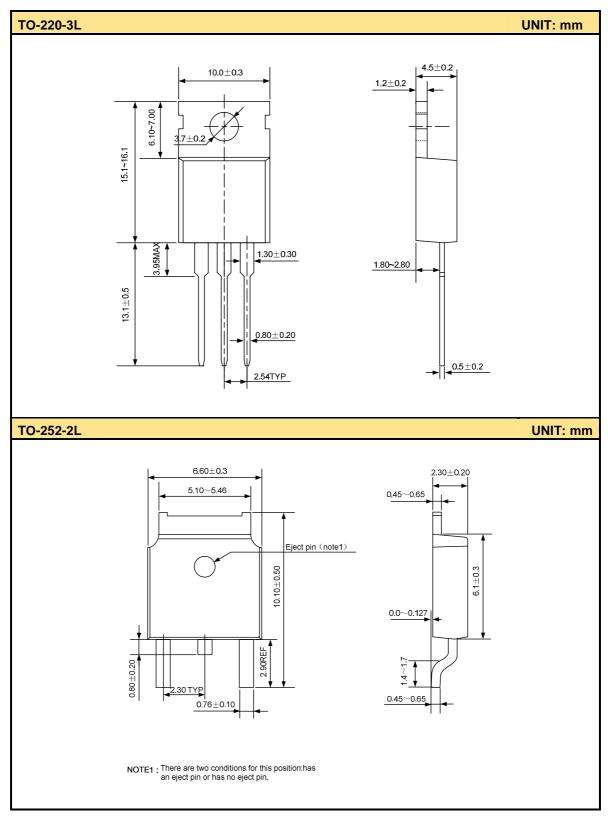
Electrical Characteristics (Tc=25°C, Unless Otherwise Specified

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit	
Drain -Source Breakdown Voltage	B _{VDSS}	V _{GS} =0V, I _D =250µA	60			V	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V			1.0	μA	
Gate-Source Leakage Current	I _{GSS}	$V_{GS}=\pm 20V, V_{DS}=0V$			±100	nA	
Gate Threshold Voltage	V _{GS(th)}	V_{GS} = V_{DS} , I_D =250 μ A	2.0		4.0	V	
Static Drain- Source On State Resistance	R _{DS(on)}	V_{GS} =10V, I_{D} =25A		18	23	mΩ	
Input Capacitance	C _{iss}			1375.8			
Output Capacitance	C _{oss}	$V_{DS}=25V, V_{GS}=0V,$		393.2		pF	
Reverse Transfer Capacitance	C _{rss}	f=1.0MHz		102.6			
Turn-on Delay Time	t _{d(on)}			21.67			
Turn-on Rise Time	t _r	V _{DD} =30V, R _G =25Ω		86.67			
Turn-off Delay Time	t _{d(off)}	I _D =50A		32.33		ns	
Turn-off Fall Time	t _f			93			
Total Gate Charge	Q_g			43.25			
Gate-Source Charge Q _{gs}		V_{DS} =48V, I _D =50A,		8.11		nC	
Gate-Drain Charge	Q_{gd}	V _{GS} =10V		23.76			
Gate resistance	R_{G}	f=1MHz, Drain Open, OSC Level: 20mv		2.2		Ω	

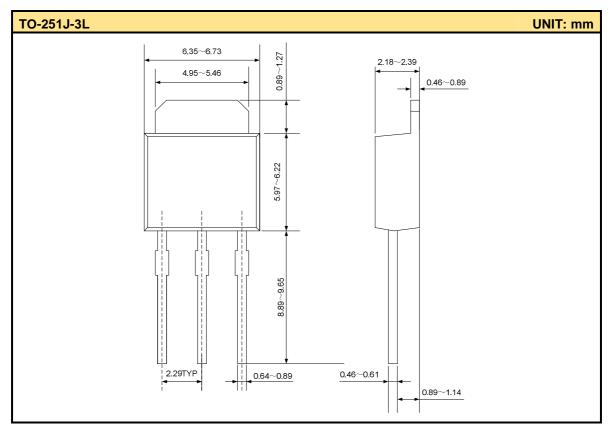
Source-Drain Diode Ratings and Characteristics

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Continuous Source Current	I _s	Integral Reverse P-N			50	
Pulsed Source Current	I _{SM}	Junction Diode in the MOSFET	-		200	A
Diode Forward Voltage	V_{SD}	I _S =50A, V _{GS} =0V			1.2	V
Reverse Recovery Time	T _{rr}	I _S =50A, V _{GS} =0V,		67.2		ns
Reverse Recovery Charge	Q _{rr}	dI _F /dt=100A/µs		0.2		μC

Notes:


1. L=0.1mH, IAS=53A, V_{DD}=35V, RG=20 Ω , starting T_J=25°C;

- 2. Pulse Test: Pulse width ≤300µs,Duty cycle≤2%;
- 3. Essentially independent of operating temperature.



50A, 60V, N-Channel MOSFET

Package Outline

Package Outline (continued)

Disclaimer:

The information furnished in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Golden Gate Integrated Circuits (GGIC) for its use. GGIC reserves the right to change circuitry and specifications at any time without notification to the customer.

- Golden Gate Integrated Circuits reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using Golden Gate Integrated Circuits products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Golden Gate Integrated Circuits products could cause loss of body injury or damage to property.
- Golden Gate Integrated Circuits (GGIC) Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of GGIC Products for use in life support appliances, devices, or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify GGIC for any damages resulting from such use or sale.